

Subscriber access provided by ISTANBUL TEKNIK UNIV

1,2-Dehydroreticuline: Conversion of Iminium Salts Into Enamines

Xiao-shu He, and Arnold Brossi

J. Nat. Prod., 1993, 56 (6), 973-975• DOI: 10.1021/np50096a029 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50096a029 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

1,2-DEHYDRORETICULINE: CONVERSION OF IMINIUM SALTS INTO ENAMINES¹

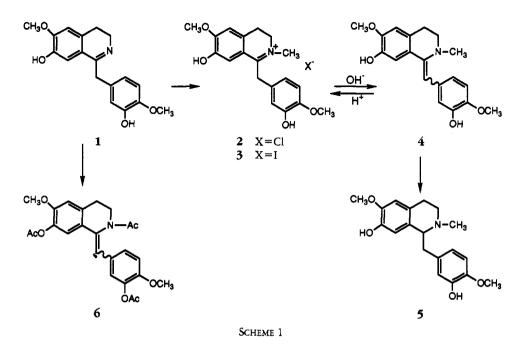
XIAO-SHU HE

Laboratory of Medicinal Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH Bethesda, Maryland 20892

and ARNOLD BROSSI

Department of Chemistry, Georgetown University, Washington, D.C. 20057

ABSTRACT.—1,2-Dehydroreticulinium iodide [3] is converted at pH 8 and above into the enamine 4. It is suggested that the cytosolic NADPH₂-dependent enzyme which converts 1,2-dehydroreticulinium salts at alkaline pH 7.8 may be operating on the enamine, rather than a quaternary iminium salt.


The biosynthesis of morphine alkaloids from (S)-reticuline requires conversion of the S into the R enantiomer which also is a natural alkaloid (1,2). It is assumed that this transformation proceeds via a 1,2-dehydroreticulinium salt (3) since the chloride 2 was found to occur naturally (4). A cytosolic and NADPH₂dependent enzyme, found in Berberidaceae plants and operating at pH 7.8, was reported to control this reaction (5). It is well established that quaternary 1-benzyl-substituted 3,4-dihydroisoquinolines exist in alkaline milieu as enamines (6), and that N-acylated analogues undergo in the presence of chiral catalysts a highly stereospecific reduction (7). It seemed prudent, in light of these reports, to explore whether quaternary 1,2-dehydroreticulinium salts were stable under the basic conditions used in their enzymatic reduction or whether they existed in the form of enamines. We now present evidence that 1,2-dehydroreticulinium iodide [3], prepared by a published procedure (8), is present at pH 8 and above in considerable amounts as the enamine 4.

The enamine **4** was extracted from an aqueous suspension of the quaternary

iodide **3** after the addition of $NaHCO_3$ (pH 8.5), or from an aqueous suspension of 3 in a buffered solution at pH 8. It was found from the ¹H-nmr spectra that the enamine 4 in pH 8.5 solution contained 18% of the quarternary salt, while at pH 8 it contained 60% of the quarternary salt. The enamine 4 was very polar on tlc [Si gel, CHCl₃-MeOH (4:1)] but clearly separated from the much less polar reticuline [5] which was used for reference (9) and from the more polar 3. Amorphous 4 showed a molecular ion in the ms at m/z 328, and its ¹H-nmr spectrum showed an allylic proton at 5.79 ppm which was absent in 5. The uv spectrum of 4 in MeOH showed maxima at 270 and 326 nm. On addition of acid to the alcoholic solution of 4 the uv maxima displayed a bathochromic shift and became identical with the uv spectrum of 3, which showed maxima at 253, 311, and 370 nm. Reduction of 4 with NaBH₄ in MeOH and catalytic reduction of 4 in MeOH over Pt-catalyst afforded 5, which was isolated as its perchlorate salt and identical with a reference sample (9) (Scheme 1).

The structure of the amorphous enamine **4** is supported by its m/z of 328, by the presence of a vinylogous proton at 5.79 ppm, which is present in the triacetate **6** at 6.37 ppm, and by its uv spectrum showing maxima at 270 and 326 nm. Presence of the OH group in the

¹This paper is dedicated to Hans Heine, Director of Licensing and Product Planning at Madaus AG., Cologne, Germany, who died on June 5, 1992.

benzylidene moiety as a clearly separated doublet at 8.75 ppm suggests that 4 is a mixture of geometrical isomers as present in N-formylated (10) and N-ethoxycarbonylated analogues (11).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mp (uncorrected) Thomas Hoover capillary mp apparatus; uv spectra (λ max in nm, measured in MeOH) Hewlett-Packard-8450-A UV/VIS spectrophotometer; ¹H nmr spectra Varian-XL-300 (300 Hz) spectrometer, δ values in ppm relative to internal TMS, coupling constants (J) in Hz; cims (NH₃) Finnigan-1015D; hrms Hitachi-Perkin-Elmer RMU-6E instrument; tlc Si gel plates from Analtech Inc.; solvent system A,CHCl₃-MeOH-NH₄OH (90:9:1), B, CHCl₃-MeOH (4:1); pH 8.00 buffer solution from Chemical Manufacturing Division, Fisher Scientific, Fair Lawn, NJ.

3,4-Dihydro-1-(3'-hydroxy-4'- methoxybenzyl)-6-methoxyisoquinolin-7-ol[1].—This compound was synthesized as described by Teitel and Brossi (8).

3,4-Dihydro-1-(3'-hydroxy-4' - methoxybenzyl)-6-methoxy-2-methylisoquinolin-7-ol iodide [**3**]. Compound **3** was synthesized as described in Teitel and Brossi (8): uv λ max 250, 311, 368; ¹H nmr (DMSO-d₆) δ 3.06 (t, 2H, J=7.5 Hz, 4-CH₂), 3.74–3.70 (d, 6H, OMe), 3.90 (s, 3H, NMe), 4.04 (t, 2H, J=7.5 Hz, 3-CH₂), 4.40 (s, 2H, CH₂-Ar), 6.48 (d, 1H, J=9 Hz, H-6'), 6.70 (d, 1H, J=9 Hz, H-5'), 6.86 (s, 1H, H-2'), 7.07 (s, 1H, H-8), 7.36 (s, 1H, H-5), 9.06 (s, 1H, OH), 9.59 (s, 1H, OH).

3,4-Dihydro-1-(3'-hydroxy-4'-methoxybenzylidene)-6-methoxy-2-methyl isoquinolin-7-ol [4].—A. Compound 3 (100 mg, 0.22 mmol) was dissolved in 5 ml of saturated NaHCO₃ solution (pH 8.5) and extracted with CH₂Cl₂ (25 ml \times 6). The alkaline aqueous solution was evaporated in vacuo and the residue washed with CH,Cl, (50 ml). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuo to give an orange-colored amorphous solid: $uv \lambda max 270$, 326; cims $[MH]^+$ 328; hrms $[M]^+$ 327.1479 $(C_{19}H_{21}NO_4^+ requires 327.1471); {}^{1}H nmr (DMSO$ d_{6}) δ 2.60 (s, 3H, NMe), 2.67–3.06 (dt, 4H, J=6 Hz, 3,4-CH,), 3.74 (s, 3H, OMe), 3.77 (s, 3H, OMe), 5.79 (s, 1H, CH-Ar), 6.70-7.11 (m, 5H, Ar-H), 8.31 (s, 1H, OH), 8.75 (d, 1H, OH).

B. Compound **3** (250 mg, 0.55 mmol) was dissolved in 10 ml of a pH 8.0 buffer solution (NaOH+KH₂PO₄) and extracted with CH₂Cl₂ to give a pale yellow solid (114 mg, 0.35 mmol, 63.6%). The ¹H-nmr spectra with an intensity ratio of the peaks at 3.91 (=NMe, intensity 98.5) and 2.61 (-NMe, intensity 65.0) established that 60% of the quaternary salt and 40% of the enamine **4** were present.

1,2,3,4-Tetrahydro-1-(3'-hydroxy-4'methoxybenzyl)-6-methoxy-2-methyl isoquinolin-7-ol perchlorate (reticuline perchlorate; $5 \cdot \text{HClO}_4$).—A. Compound 4(50 mg, 0.15 mmol) was dissolved in 5 ml of MeOH, and 10 mg of NaBH₄ was added. The mixture was stirred at room temperature for 1.5 h and evaporated in vacuo to give a light brown oil which was dissolved in CHCl₃/H₂O (10 ml/10 ml). The H₂O layer was extracted with CHCl₃ (10 ml×2). The combined CHCl₃ layers were washed with brine, dried over anhydrous Na₂SO₄, and evaporated in vacuo to give a colorless oil. This was converted in boiling iPrOH on addition of 60% HClO₄ into the perchlorate salt as off-white crystals (42.7 mg, 0.1 mmol, 66.3%): mp 173–174° [lit. (8) mp 128–130°; lit. (12) mp 144–145°]; ms, ¹H nmr, and tlc identical with those of reticuline (9). The mp's of **5**·HClO₄ given in the literature vary considerably.

B. Compound 4 (59 mg, 0.18 mmol) was dissolved in 5 ml of MeOH, and 10 mg of PtO₂ was added. The mixture was stirred at room temperature under H₂ until the tlc indicated the reaction to be complete. The reaction mixture was filtered through celite, and the filtrate was evaporated in vacuo to give a light brown oil which was treated in the same way as in method A to give the perchlorate salt as off-white crystals (28 mg, 0.065 mmol, 36.1%): ms, ¹H nmr, and the tlc were identical with those of an authentic sample of reticuline (9).

3,4-Dihydro-1-(3'-acetoxy-4'-methoxybenzylidene)-7-acetoxy-6-methoxy-2-acetylisoquinoline [6].—Dihydroisoquinoline 1 (20 mg) was dissolved in 2 ml of Ac₂O, and a little DMAP (4dimethylaminopyridine) was added. The reaction mixture was stirred at room temperature overnight and then evaporated in vacuo. The residue was dissolved in CHCl₃, and the solution was washed with saturated NaHCO3, 2 N HCl, and brine and dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo to give a yellow oil which was purified by preparative tlc {Si gel, CHCl₃-MeOH (100:2), eluted twice] to give 6 as a colorless oil as a mixture of rotamers (24 mg, 85% yield): cims $[MH]^+$ 440; ¹H nmr (CDCl₃) δ 2.23 (s, 6H, OAc), 2.28 (s, 3H, NAc), 2.94 (t, 2H, J=6.6 Hz, 4-CH₂), 3.83 (s, 6H, OMe), 3.94 (t, 2H, J=6.6 Hz, 3-CH₂), 6.37 (brs, 1H, CH-Ar), 6.76-7.23 (m, 5H, Ar-H).

LITERATURE CITED

- 1. E. Brochmann-Hanssen and T. Furuya, *Planta Med.*, **12**, 328 (1964).
- E. Brochmann-Hanssen and E. Nielsen, Tetrahedron Lett., 1271 (1965).
- E. Brochmann-Hanssen, in: "The Chemistry and Biology of Isoquinoline Alkaloids." Ed. by J.D. Phillipson, M.F. Roberts, and M.H. Zenk, Springer-Verlag, Heidelberg, 1985, pp. 230–231.
- P.R. Borowski, J.S. Horn, and H. Rapoport, J. Am. Chem. Soc., 100, 276 (1978).
- W. De-Eknamul and M.H. Zenk, Tetrahedron Lett., 34, 4855 (1990).
- W.J.Gensler, in: "Heterocyclic Compounds." Ed. by R.C. Elderfield, John Wiley & Sons, New York, 1952, Vol. 4, p. 468.
- R. Noyori, M. Ohta, Yi Hsiao, M. Kitamura, T. Ohta, and H. Takaya, J. Am. Chem. Soc., 108, 7117 (1986).
- S. Teitel and A. Brossi, J. Heterocycl. Chem., 5, 825 (1968).
- K.C. Rice and A. Brossi, J. Org. Chem., 45, 592 (1980).
- M. Shamma and J.L. Moniot, in: "Isoquinoline Alkaloids Research." Ed. by M. Shamma, Plenum Press, New York, 1978, pp. 219-220.
- 11. I. Ninomiya and T. Naito, Alkaloids, 22, 225 (1983).
- K.W. Gopinath, R.T. Govindachari, and N. Viswanathan, Chem. Ber., 92, 1657 (1958).

Received 6 November 1992